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ABSTRACT

The application of advanced composite materials to aircraft
structures holds the potential for significant improvements in the
aircraft system. The application of these materials in primary
structures is evaluated and a methodology discussed for deter-
mining the optimum configurations of the primary structure
components. The procedure goes beyond establishing optimum
laminate patterns and determines the appropriate size, shape, and
spacing of any stiffener materials. Constraints which may be
applied to the optimization process include manufacturing,
strain, and stiffness requirements. The impact on the structural
weight of various potential constraints is examined. Comparisons
are made between optimized advanced composite structure and
existing metal structure for those cases for which practical
constraints include stiffnesses, strain levels, and manufacturing
requirements.

INTRODUCTION

The commercial aircraft industry has had a history of producing
new aircraft that offered improved efficiencies over preceding
aircraft systems (Figure 1). The improved efficiencies have
generally resulted from a series of major improvements in the
propulsion system and configuration refinements. Comparatively
speaking, improvements in structural weight have played only a
minor role in producing improved economics.

Although no major breakthroughs in the area of structural weight
have occurred, it has long been recognized that weight saving has
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a large potential for improving the economics of the commercial
aircraft system. Using the DC-10-10 aircraft shown in Figure 2 as
an example, it can be observed from Figure 3 that a 25-percent
reduction of the secondary structure weight can reduce the total
operating costs 1.5 percent and that a 25-percent reduction of
the structural weight (primary and secondary) would result in a
7.5-percent reduction.

The recent development of advanced composite structures
presents the potential for large reduction in transport structural
weight in the 1985 to 1995 time period with the development of
airframes utilizing composite structures. The advanced com-
posites era was introduced in 1963 by the U.S. Air Force Project
Forecast. Since that time there has been steady progress in the
development of engineering methods, structural concepts, and

FIGURE 2. DC-10 SERIES 10 JET TRANSPORT

15
©~ DC-10-10 25 PERCENT
REDUCTION IN
12 SECONDARY
STRUCTURAL
WEIGHT
PERCENT
CHANGE IN 9
TOTAL A~DC-10-10 25 PERCENT
OPERATING REDUCTION IN
COSTS STRUCTURAL WEIGHT
o
3
0

REDUCTION IN WEIGHT (1000 LB)

FIGURE 3. IMPACT OF WEIGHT REDUCTION ON TOTAL
OPERATING COSTS



improved materials. Secondary structure components such as the
DC-10 graphite/epoxy upper aft rudder shown in Figure 4 have
been developed and placed in service.

FIGURE 4. GRAPHITE/EPOXY RUDDER FOR DC-10-10

The high strengths and stiffnesses of the advanced composite
materials provide the designer with the flexibility for a more
weight-efficient solution to the vehicle strength and stiffness
requirements. The objective of this paper is to discuss the newly
developing area of composite structural element optimization
and to demonstrate the potential impact of such techniques on
the design of composite primary structures.

OPTIMIZATION OF COMPOSITE STRUCTURES

Although the discipline of optimization in structural design has
become ever important in the past 10 years for conventional
design, the advent of advanced composite materials in design has
made this discipline even more important. In conventional
design, the sizes and locations of fabricated parts are important
in least-weight designs. With composite materials, not only are
these factors still important, but a new dimension is added. The
orientation in which the built-up plies are patterned is also vitally
important to the weight of the structure. Hence, some sort of
optimization is always incorporated in designs using the advanced
composites.

Ply orientation is the most frequently encountered optimization
problem in designing composite structures. Given a set of loading
conditions, each consisting of combined membrane panel loads,
and a set of minimum stiffnesses, what is the optimum pattern of
ply orientations? In practice, it has been found that a reasonably
good design can be determined if only 0-, +45-, and 90-degree
orientations are treated. In this case, it is only necessary to
determine X = (L, M, N) from 3-dimensional design space, where
L, M, and N denote the number of 0-, 90-, and +45-degree plies,
respectively. A series of computer programs and procedures for
laminate optimization are discussed in Reference 1.

A method for selecting laminates of transport wing structures,
optimized for both strength and flutter requirements, is pre-
sented in Reference 2. This technique takes advantage of the
unique capability of composite structures to tailor independently
the bending and torsional stiffnesses. The procedure starts with a
search for the optimum pattern with no stiffness constraints.
Stiffness and mass derivatives for the strength-only design are
then used to obtain a minimum weight flutter-free design.
Presented in Figure 5 is an application to a transport wing that
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indicates the optimum stiffness distributions lie between the
stiffnesses of the strength-only composite wing and the flutter-
free metal wing.

(b)

A further development in the area of composite structures
optimization is described in References 3, 4, and 5, where
optimization procedures were used to size hat-, J-, and blade-
stiffened compression panels. In Reference 4 the structural
efficiency of graphite/epoxy and aluminum compression panels is
compared as shown in Figure 6; in Reference 5 the structural
efficiency of hat-, blade-, and J-stiffened panels are compared.
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STIFFENED PANEL OPTIMIZATION

In order to optimize stiffened compression panels and to study
the impact of various constraints, a computer program was
developed utilizing the analytical and optimization procedures
described in Appendixes A and B. Two basic panel stiffening
concepts emerged as the most promising from an initial screening
of several candidate concepts shown in Figure 7. The preliminary
screening of the candidates consisted of an efficiency evaluation
of each of the concepts. Figure 8 shows the structural efficiency
curves developed for panels with only strength constraints. The
hat-stiffened panel was found to be the next-most efficient of the
concepts considered and was selected for further evaluation. The
second panel concept selected was the blade-stiffened panel. This
concept, although the least efficient of the concepts considered,
held the potential for low-cost fabrication.
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The design variables of the two selected concepts, hat and blade
stiffening, are illustrated in Figures 9 and 10. The basic optimiza-
tion procedure provides for the design of these concepts with the
listed design variables and with the potential for imposing various
sets of stiffness and geometry constraints.
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OPTIMIZATION OF COMPOSITE TRANSPORT
WING STRUCTURE

The stiffened panel optimization procedure was used to study
the impact of various practical constraints on the upper wing
covers of the DC-9-30, Figure 11. The aluminum covers have
continuous skin from centerline to the tip assembly and are
stiffened with Y-section stiffeners. The in-plane loads summa-
rized in Figure 12 have maximum values of approximately
18,000 pounds per inch compression and 2900 pounds per inch
shear.

The weights of composite panels which are unconstrained except
by the load and area requirements of the wing can be determined
by integrating the efficiency curves given in Figure 13. It should
be noted, however, that there are a number of practical



FIGURE 11. DC-9 SERIES 30 JET TRANSPORT
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constraints which the composite panels do not meet including
practical fabrication constraints, minimum gauge requirements,
out-of-plane loads, fail-safe requirements, and wing stiffness
requirements.

One fabrication constraint is the requirement for constant
stiffener spacing. In the totally unconstrained designs the
stiffener spacing varied with load intensity. The effect on
constant stiffener spacing is observed in Figure 14 where the
efficiency curves are given for hat-stiffened panels which are
restricted to spacings of 3 inches, 5 inches, and 7 inches and in
Figure 15 where the efficiency curve for blades with 5-inch
constant spacing is given.

A second set of constraints which has significant impact on the
overall panel weight is the stiffness requirements. These stiffness
levels result from minimum flutter and control reversal speed
requirements and from related static and dynamic load criteria.
The strength optimum blade- and hat-stiffened panels have much
lower stiffnesses than the metal panel, Figures 16 and 17.
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Restricting the hat- and blade-stiffened panels to the stiffnesses
of the metal wing, the efficiencies given in Figure 18 are
obtained. These designs were restrained to a constant 5-inch
stiffener spacing. Section views of the unconstrained and
stiffnesses constrained blade designs with S5-inch spacing at
Station 300 are compared in Figure 19. These constraints domi-
nate the designs to such a level that weight-is not sensitive to the
configuration. It can also be observed that weight is not
particularly sensitive to stiffener spacing. Figure 20 shows the
optimized weight of designs at Station 100 for increasing
stiffener spacing.
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A further practical constraint that must be considered is that the
wing cover panel has holes and the strains in the graphite/epoxy
will have to be held below approximately 4000 inch per inch as
an allowable strain level for laminates with small holes. Although
in the hat-stiffened concept the holes could be placed in the all
+45-degree laminate area, the potential for misdrilled holes or
subsequently drilled holes results in a similar constraint criterion.
The change in the structural efficiency curve for the constrained
hat- and blade-stiffened panels is presented in Figure 21.
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Rib fixity was assumed to be simply supported for the cases
studied. The specific value of the fixity will depend upon the
method of attachment of the cover panel to the ribs. Several
potential concepts for bolted clips are given in Figure 22. The
specific value of the fixity is only a weight impact for the
unconstrained designs. It should be noted, however, that
although the weight does not change for the stiffness constrained
designs, the configuration does change with fixity.

FIGURE 22. BOLTED CLIPS OF RI1BS FOR BLADE STIFFENED
PANELS

Although the weight comparisons have been made on the
efficiency plots, the impact in terms of total weight saved is also
of interest. Figure 23 compares the weight in pounds of the
upper wing cover (both halves) for each of the concepts studied.
It should be noted that the weight saving for the unconstrained
designs is not obtainable in practice and is listed for reference
only.
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CONCLUSIONS

Stiffened panel optimization procedures have been shown to be a
powerful tool for the design of composite structures. By chang-
ing the stiffener spacing during conventional practice, rib spacing
or tib fixity has a major impact on the strength of a given design.
When an optimization procedure is used, however, the configura-
tion changes as the constraints change, but the weight and
strength do not necessarily change significantly. This occurs in
large transport aircraft structures because the stiffness constraints
dominate the design and establish the minimum weight levels.
The use of an optimization procedure, therefore, provides the
opportunity to use a wide range of detailed configurations, stiff-
ener spacings, rib attachments, and rib spacings that are consist-
ent with the lowest-cost form of construction,

APPENDIX A
BUCKLING ANALYSIS OF BLADE-STIFFENED
COMPRESSION PANELS

A buckling analysis of a blade-stiffened compression panel is
derived, based on the simplifying assumption that the stiffener
and skin modes are repeated for each stiffener bay. It is further
assumed that the longitudinal deformations behave elastically
and conform to plane strain theory. Finally, it is assumed that
stiffener rotations occur about the intersection of the stiffener
web and skin lines. A total of five modal coefficients are utilized
in a Rayleigh-Ritz procedure, leading to an eigenvalue problem of
dimension five. The five modal coefficients which are used to
define the buckling mode of a single stiffener bay are illustrated
and defined in Figure A-2.

The theory which is presented here is actually valid for a more
general, J-shaped open-section stiffener, which of course, with a
proper choice of configuration variables, reduces to a blade
shape, The J-stiffened bay is broken down into the four
components shown in Figure A-1.
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DISPLACEMENTS

Total displacements of the stiffener bay are defined in terms of
the five modal coefficients as follows:

4
@and@ v 3(-2— pz? ~z3)A+B+ (z— = 23) Ezsin ax

3p

H

w =0

©) v

B sin ax

(Cy? + Dy? — Ey)sin ax

£
[

276



©)

v = (B — 2Chz — 3Dh%z + Ez) sin ax
w = (Ch? + Dh3 — Eh) sin ax
LONGITUDINAL STRAINS

Commensurate with the usual assumptions of zero shear strains

in open section torsional buckling problems, the longitudinal
strains can be derived as follows:

©) AL
ox  dy
ou
— = —aB cosax
dy
u = —aBy cosax + f{x)
du 5 . ,
€ = — = o°Bysin ax + f(x)
dy
©) ow o du | 0
ax oz
du 3 3
3— = a(~Ch® — Dh’ + Eh) cos ax
z
u = az(—Ch? — Dh® + Eh) cos ax + g(x)
du 2 2 3 . '
€ =T = a*z(Ch* + Dh® — Eh) sin ax + g'(x)
X
e@ = atz=0,y=h
a?Bhsinax + f'(x) = g'(x)
D~ @ atz=0,y=0
Dand @ € = f'(x)
@ € = o By sin ax + f'(x)

©)

o?z(Ch? + Dh3 — Eh) sin ax

+ o2 Bh sin ax + f'(x)

In order to determine the unknown function, f'(x), summation
of longitudinal forces must be zero at every station.

f

eEdA =0 Notationally, E appearing in EdA or Et terms
denotes the elastic modulus.

£ f EdA + sin ax é o® ByEdA
A

+sin ax Jé [a? z(Ch? + Dh® — Eh) + o> BEh] EdA = 0
f' = (r;B+r;C+1,D+r E)sin ax

Q = EQ@p — d)+ E@n + E@b + E@4

2 h2
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2Q
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The longitudinal strains can finally be written
@ and @

€ = (rzB+r3C+r4D+r5E)sinozx

]

[(ry +a2y)B +1;C+1,D +rE] sinax

i

[(r, + &®h)B + (1, +a?h?2)C

+(ry + o?h’ z2)D + (rg — o? hz)E] sin ax
These strains can be further denoted ase =€ sin ax

CURVATURE TERMS

@and@ —a? [(‘% pz? — 23> A+B

4 .
+(— 2 )E sin ax

w—1z
3p

i

’X X

3 8 .
v, = W5 p—62]A — — zE|sin ax
2 2
p
3 4
Voxz = O‘[("‘pz + 322) A+ (1 ———zz) E] oS ox
2 2
p
@ W= — o? (Cy? + Dy? — Ey)sin ax
W= (2C + 6Dy) sin ax
Wy = @ (2Cy + 3Dy2 - E) cos ax
Vo = — o2 B sin ax
@ Vix = —a? (B—2Chz—3thz+Ez) sin ax
Vg, = 0
Vigg = @ (—2Ch — 3Dh? + E) cos ax
w, = —a? (Ch? + Dh? — Eh) sin ax
STRAIN ENERGY
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The first four integrals represent the membrane strain energy,

while the last four represent the bending strain energy. Integra-
tion over the length is separable and trivial since

a a a
f sin? axdx = f cos? axdx = -~
0 0 -

Matrically, the strain energy can be written

-
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where the elements of matrix Y are in terms of the geometric
parameters only.

POTENTIAL ENERGY
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The potential energy is defined as the negative of the above
work, W, of the external forces on the body, relative to the
unstressed state (u =v =w = 0). Here, the external forces can be
visualized as fictitious forces arising from the longitudinal
in-plane stresses rotating in conformity with the curvatures. The
differential fictitious forces in the first integral can be expressed
as

df = ov, ,dA dx = ecrv.”Et dzdx
so that the differential work of the first integral is
€

1
dw = —z-vdf = f VigxV Et dzdx

Matrically, the work of the external forces can be written

=

=
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N
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THE EIGENVALUE PROBLEM

The eigenvalue problem is derived by applying the principle of
the minimum of the total potential, which enforces the condi-
tions of equilibrium. The total potential is

P=U-W ='%XT (Y-Z] X

where X now represents the vector {A BCD E}

oP

oX.

1

=0fori=1...5

produces the eigenvalue problem [Y — €.Z1X=0 and the
minimum eigenvalue, €_, is the buckling strain. A subroutine has
been coded at Douglas for extracting the buckling strain from the
above eigenvalue problem. :

APPENDIX B
SEARCH ROUTINE FOR OPTIMIZATION

A computer program for searching for optimized structural
configurations was coded in Fortran and is based on the method
of feasible directions (Reference 6).*

In essence, a simplex problem is formulated and solved for the
feasible search direction. To elaborate on this method, consider a
configuration space which is divided between a feasible and an
unfeasible portion, as illustrated by the simple, hypothetical,
2-dimensional problem shown in Figure B-1. The variables x, and
X, represent dimensions of a structural configuration which are
to be determined for an optimum design. In the case of
composite laminate designs, the variables can also represent the
number of plies in a particular orientation, or even the angle of
the orientation itself. Although a 2-dimensional problem is the
simplest that can be considered, it does lend itself to a visual
understanding of the method. A constraint curve separates the
feasible portion of the 2-dimensional configuration space from
the unfeasible. In general, it consists of constraints imposed on
the design variables, such -as minimums and maximums, plus
behavior variable constraints. Behavior variable constraints are:
applied stress/allowable buckling stress = 1.0. Lines of constant
weight are also shown in the figure. For the more general
N-dimensional space, the constraints are hypersurfaces while the
constant weight planes are hyperplanes.

LINEAR CONSTRAINTS

X2
UNFEASIBLE

NONLINEAR CONSTRAINT

UNFEASIBLE

Xy
FIGURE B-1. HYPOTHETICAL CONFIGURATION SPACE

*For the convenience of the reader, the essential elements of this reference are
reproduced here.



When the stepping process has reached a point on a general
nonlinear constraint boundary, pointB in Figure B-2, a new
vector direction is carefully selected for an acceptable design
improvement. To ensure that this vector direction be feasible,
that is, not violate the constraint to within a linear approxima-
tion of the boundary at the point B, then the vector direction V
must be related to the normal vector, Px, by

USABLE — FEASIBLE SECTOR

\

Xy
FIGURE B-2. DIRECTION FINDING PROBLEMS AT A CONSTRAINT

Defining the ratio of applied stress/allowable stress by P, which is
a function of the configuration variables, x;, the gradient vector
{BP/aXi} can be computed at point B on the constraint surface.
This vector is the normal to the constraint surface referred .to
above as P.

To ensure that this same direction be usable, that is, reduce the
objective function, weight, the vector, V, must also be related to
the weight gradient, W_, by

T <o

These two conditions define the usable-feasible direction of
search within the configuration space.

Any computational scheme that finds a direction of search
within the bounds of these two inequalities can be referred to as
a method of feasible directions. The particular scheme employed
here is known as Zontendijk’s method. It is based on solving a
suboptimization problem for the direction vector. The added
degree of complexity and computational effort is offset by a
carefully selected search direction which, in the long run, reduces
the number of gradient evaluations necessary.

Zontendijk’s problem involves the maximization of a scalar, g, in
accordance with the following conditions:

(e tres<o
) vt {w j+s<o0

(3) The length of {V} is bounded.

The parameter, 0, is utilized as an adjustment to control the
degree that the direction is biased by P_. There is no bias for
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# = 1. For a linear constraint, the parameter § should be set at
§ =0, thus allowing the direction to be in the plane of the
constraint. As the convex nonlinearity of the constraint
increases, so too should 6, with the consequence of less weight
reduction.

One way of satisfying condition (3) of Zontendijk’s problem is to
normalize the vector, V, by the criterion

Vi<t i

In order that the suboptimization problem be posed as a standard
linear programming problem suited to a simplex solution, the
transformation V=V, +1 is made to ensure that V| remains
positive. The final form of Zontendijk’s problem becomes:

@ {viT{p} ves< TP,

1=
® VT {wlees 2w,
i=1 !

(¢c) 0<Vi<2 i=1,...,n

This problem is now in the form:

Z

{e}?

subject to the constraints  [A] {x} < {b},

maximize the scalar

x; <0
which is recognized as the standard linear programming problem
which is so suitably solved by the simplex algorithm.

Once the feasible direction is determined, a search is conducted
along that direction until a constraint is encountered. A reduced
weight is associated with this new design point. As this process is
repeated, the search takes on a stepping appearance, bouncing
between constraints as it approaches a converged design. This
searching process is illustrated in Figure B-3. Of course, a number
of programming type detail problems have been overcome in the
course of the development of the computer program. Some of

OPTIMUM DESIGN POINT

\)

X3

FIGURE B-3. SEARCH PROCESS FOR OPTIMIZED DESIGN



the improvements which have been incorporated into the
searching process in an attempt to speed it up include:

A transformation to consistent variables
Retention of past constraint intercepts

Recognition of “close™ as well as “intercepted’ constraints
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